
How to use Parquet
 as a basis for ETL and analytics

Julien Le Dem @J_

VP Apache Parquet
Analytics Data Pipeline tech lead, Data Platform

@ApacheParquet

Outline

2

- Storing data efficiently for analysis
- Context: Instrumentation and data collection
- Constraints of ETL

Storing data efficiently for analysis

Why do we need to worry about efficiency?

Producing a lot of data is easy

5

Producing a lot of derived data is even easier.

Solution: Compress all the things!

Scanning a lot of data is easy

6

1% completed

… but not necessarily fast.

Waiting is not productive. We want faster turnaround.

Compression but not at the cost of reading speed.

Interoperability not that easy

7

We need a storage format interoperable with all the tools we use
and

keep our options open for the next big thing.

Enter Apache Parquet

Parquet design goals

9

Interoperability

Space efficiency

Query efficiency

Efficiency

Columnar storage

11

Logical table
representation

Row layout

Column layout

encoding

Nested schema

a b c

a b c

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4 a5 b5 c5

a1 b1 c1a2 b2 c2a3 b3 c3a4 b4 c4a5 b5 c5

encoded chunk encoded chunk encoded chunk

Properties of efficient encodings

12

- Minimize CPU pipeline bubbles:

	 highly predictable branching
	 reduce data dependency
!

- Minimize CPU cache misses

	 reduce size of the working set

The right encoding for the right job

13

- Delta encodings:

for sorted datasets or signals where the variation is less important than the absolute
value. (timestamp, auto-generated ids, metrics, …) Focuses on avoiding branching.
!

- Prefix coding (delta encoding for strings)

When dictionary encoding does not work.
!

- Dictionary encoding:

small (60K) set of values (server IP, experiment id, …)
!

- Run Length Encoding:

repetitive data.

Parquet nested representation

14

Document

DocId Links Name

Backward Forward Language Url

Code Country

Columns:
docid
links.backward
links.forward
name.language.code
name.language.country
name.url

Schema:

Borrowed from the Google Dremel paper

https://blog.twitter.com/2013/dremel-made-simple-with-parquet

https://blog.twitter.com/2013/dremel-made-simple-with-parquet

Statistics for filter and query optimization

15

Vertical partitioning
(projection push down)

Horizontal partitioning
(predicate push down)

Read only the data
you need!+ =

a b c

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a b c

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a b c

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

+ =

Interoperability

Interoperable

17

Model agnostic

Language agnostic

Java C++

Avro Thrift Protocol
Buffer Pig Tuple Hive SerDe

Assembly/striping

Parquet file format

Object model

parquet-avroConverters parquet-thrift parquet-proto parquet-pig parquet-hive

Column encoding

Impala

...

...

Encoding

Query
execution

Frameworks and libraries integrated with Parquet

18

Query engines:
Hive, Impala, HAWQ,
IBM Big SQL, Drill, Tajo,
Pig, Presto, SparkSQL
!

Frameworks:
Spark, MapReduce, Cascading,
Crunch, Scalding, Kite
!

Data Models:
Avro, Thrift, ProtocolBuffers,
POJOs

Context: Instrumentation and data collection

Typical data flow

20

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Happy users

Typical data flow

21

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

streaming
analysis

periodic
consolidation

snapshots

schema

Typical data flow

22

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

analysis

Storage (HDFS)

ad-hoc
queries
(Impala,

Hive,
Drill, ...)

automated
dashboard

Batch computation
(Graph, machine

learning, ...)

Streaming
computation

(Storm, Samza,
SparkStreaming..)

Query-efficient
format
Parquet

streaming
analysis

periodic
consolidation

snapshots

Typical data flow

23

Happy
Data Scientist

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

analysis

Storage (HDFS)

ad-hoc
queries
(Impala,

Hive,
Drill, ...)

automated
dashboard

Batch computation
(Graph, machine

learning, ...)

Streaming
computation

(Storm, Samza,
SparkStreaming..)

Query-efficient
format
Parquet

streaming
analysis

periodic
consolidation

snapshots

Schema management

Schema in Hadoop

25

Hadoop does not define a standard
notion of schema but there are
many available:

- Avro

- Thrift

- Protocol Buffers

- Pig

- Hive

- …

And they are all different
Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

streaming
analysis

periodic
consolidation

snapshots

schema

What they define

26

Schema:

Structure of a record

Constraints on the type

!
Row oriented binary format:
How records are represented one
at a time

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

streaming
analysis

periodic
consolidation

snapshots

schema

What they *do not* define

27

	 Column oriented binary format:
Parquet reuses the schema
definitions and provides a common
column oriented binary format

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

streaming
analysis

periodic
consolidation

snapshots

schema

Example: address book

28

AddressBook

Address
street
city
state
zip
comment

addresses

Protocol Buffers

29

message AddressBook {!
 repeated group addresses = 1 {!
 required string street = 2;!
 required string city = 3;!
 required string state = 4;!
 required string zip = 5;!
 optional string comment = 6;!
 }!
}!
!
- Allows recursive definition

- Types: Group or primitive

- binary format refers to field ids only => Renaming fields does not impact binary format

- Requires installing a native compiler separated from your build

Fields have ids and can be
optional, required or repeated

Lists are repeated fields

Thrift

30

struct AddressBook {!
 1: required list<Address> addresses;!
}!
struct Addresses {!
 1: required string street;!
 2: required string city;!
 3: required string state;!
 4: required string zip;!
 5: optional string comment;!
}!
!
- No recursive definition

- Types: Struct, Map, List, Set, Union or primitive

- binary format refers to field ids only => Renaming fields does not impact binary format

- Requires installing a native compiler separately from the build

Fields have ids and can be
optional or required

explicit collection types

Avro

31

{!
 "type": "record", !
 "name": "AddressBook",!
 "fields" : [{ !
 "name": "addresses", !
 "type": "array", !
 "items": { !
 “type”: “record”,!
 “fields”: [!
 {"name": "street", "type": “string"},!
 {"name": "city", "type": “string”}!
 {"name": "state", "type": “string"}!
 {"name": "zip", "type": “string”}!
 {"name": "comment", "type": [“null”, “string”]}!
] !
 }!
 }]!
}

explicit collection types

- Allows recursive definition

- Types: Records, Arrays, Maps, Unions or primitive

- Binary format requires knowing the write-time schema

➡ more compact but not self descriptive

➡ renaming fields does not impact binary format

- generator in java (well integrated in the build)

null is a type
Optional is a union

Requirements of ETL

Log event collection

33

Initial collection is fundamentally
row oriented:
!
 - Sync to disk as early as
possible to minimize event loss
!
 - Counting events sent and
received is a good idea

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

streaming
analysis

periodic
consolidation

snapshots

schema

Columnar storage conversion

34

Columnar storage requires writes
to be buffered in memory for the
entire row group:
!
 - Write many records at a time.
!
 - Better executed in batch

Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

streaming
analysis

periodic
consolidation

snapshots

schema

Columnar storage conversion

35

Not just columnar storage:
!

- Dynamic partitioning
!

- Sort order
!

- Stats generation
Serving

Instrumented
Services

Mutable
Serving
stores

mutation

Data collection

log collection

Streaming log
(Kafka, Scribe,

Chukwa ...)

periodic
snapshots

log

Pull

Pull

streaming
analysis

periodic
consolidation

snapshots

schema

Hive / Impala:

Write to Parquet

36

OutputFormat ProtoParquetOutputFormat ParquetThriftOutputFormat AvroParquetOutputFormat

define schema setProtobufClass(job,
AddressBook.class)

setThriftClass(job,
AddressBook.class)

setSchema(job,
AddressBook.SCHEMA$)

Scalding: // define the Parquet source!
case class AddressBookParquetSource(override implicit val dateRange: DateRange)!
 extends HourlySuffixParquetThrift[AddressBook](“/my/data/address_book", dateRange)!
// load and transform data!
 pipe.write(ParquetSource())

Pig: STORE mydata !
! INTO ‘my/data’ !
! USING parquet.pig.ParquetStorer();

MapReduce:

create table parquet_table (x int, y string) stored as parquetfile;!
insert into parquet_table select x, y from some_other_table;

Query engines

Scalding

38

	 loading:
new FixedPathParquetThrift[AddressBook](“my”, “data”) {!
 val city = StringColumn("city")!
 override val withFilter: Option[FilterPredicate] = !
 Some(city === “San Jose”)!
}!
!
operations:
p.map((r) => r.a + r.b)!
p.groupBy((r) => r.c)!
p.join !
…

Explicit push
down

Pig

39

loading:
mydata = LOAD ‘my/data’ USING parquet.pig.ParquetLoader();!
!
operations:
A = FOREACH mydata GENERATE a + b;!
B = GROUP mydata BY c;!
C = JOIN A BY a, B BY b;

Projection push
down happens
automatically

SQL engines

40

Load query
Hive

create table as … SELECT city FROM addresses WHERE zip == 95113Impala
Presto

Drill
optional. !
Drill can directly
query parquet files

SELECT city FROM dfs.`/table/addresses` zip == 95113

SparkSQL
val parquetFile =
sqlContext.parquetFile(
"/table/addresses")

val result = sqlContext!
!.sql("SELECT city FROM addresses WHERE zip == 95113”)!
result.map((r) => …)

Projection push
down happens
automatically

Community

Parquet timeline

42

- Fall 2012: Twitter & Cloudera merge efforts to develop columnar formats

- March 2013: OSS announcement; Criteo signs on for Hive integration

- July 2013: 1.0 release. 18 contributors from more than 5 organizations.

- May 2014: Apache Incubator. 40+ contributors, 18 with 1000+ LOC. 26 incremental releases.

- Apr 2015: Parquet graduates from the Apache Incubator

Thank you to our contributors

43

Open Source announcement

1.0 release

Get involved

44

Mailing lists:
- dev@parquet.apache.org

!
Github repo:

- https://github.com/apache/parquet-mr
!
Parquet sync ups:

- Regular meetings on google hangout

@ApacheParquet

mailto:dev@parquet.apache.org?subject=

Questions

45

SELECT answer(question) FROM audience

@ApacheParquet

