
Data Platform
Architecture Principles

Julien Le Dem
CTO and co-founder Datakin

@J_

AGENDA

01 A Healthy Data Ecosystem

02 Data Platform Abstractions and Services

03 Observability for data pipelines

A Healthy Data
Ecosystem

01

Team interdependencies

Team A Team B

Team C

Explicit contracts
● Schemas

● Shared or Private

● SLA: experimental, production ready

Understanding dependencies
● Who do I depend on?
● Who depends on me?

Quick iterations

● Fail safe environment: Easy to undo
● Quick troubleshooting
● Quick feedback

Data Platform
Abstractions and
Services

02

Data In
motion

Storage and ingestion

Events

CDC

Services

Online storage

Data-at-rest

Archival

Data In
motion

Storage and ingestion

Events

CDC

Services

Online storage

Data-at-rest

Archival

Data Products

Data-in-motion

● Schema registry
● Keyed for CDC
● Horizontally scalable

○ Partitioning
● Candidates: Kafka, Pulsar, …

Data-at-rest
● Table abstraction:

○ Snapshot Isolation
○ Time travel: can roll back a change
○ Schema evolution
○ Partitioning decoupled from job

● Candidates:
○ Iceberg,
○ Deltalake over cloud blob storage

Processing

Data In
motion

Data-at-rest

Archival

Stream
processing

Batch
processing

Data Products

Stream processing
● Anti-pattern:

○ Dependencies outside the streaming bubble:
■ Synchronous service calls
■ Database lookup

○ Ingest that data instead (CDC / Domain events)
■ kafka.KTable, flink.DynamicTable

● Candidates:
○ Flink, Spark Streaming, Kafka Streams

● Your job as a function: inputs and outputs are
parameters.
○ Testable transformation:
○ Multiple instances in parallel

● Atomic runs:
○ output is complete or not visible

● Understand dependencies
○ Jobs depend on their inputs

Batch processing

Interactive

● Notebooks:
○ Source control for saving state
○ Repeatable environments: docker images

● Warehouse technology:
○ Decoupled storage and compute
○ Interconnection with data storage

Observability for data
pipelines

03

DATA

● What is the data source?
● What is the schema?
● Who is the owner?
● How often is it updated?
● Where is it coming from?
● Who is using the data?
● What has changed?

Today: Limited context

Maslow’s Data hierarchy of needs

New Business Opportunities

Business optimization

Data Accuracy

Data Timeliness

Data Availability

Observability for data

● Dependencies: Lineage
● availability, timeliness, accuracy
● Change management

○ Schema
○ Code
○ Size
○ Duration

Observability for data

● Dependencies: Lineage
● availability, timeliness, accuracy
● Change management

○ Schema
○ Code
○ Size
○ Duration

In the services
world it’s called
traces

Metadata:

Ingest Storage Compute

S
trea

m
in

g
B

a
tch

/E
TL

● Data Platform
built around
Observability

● Integrations
○ Ingest
○ Storage
○ Compute
○ BI dashboards

Flink

Airflow

Kafka

Iceberg / S3

BI

Marquez: Data model

Job

Dataset Job Version

Run

*

1

*

1

*

1

1*

1*
Source

1 *

● MYSQL
● POSTGRESQL
● REDSHIFT
● SNOWFLAKE
● KAFKA
● S3
● ICEBERG
● DELTALAKE

● BATCH
● STREAM
● SERVICE

Dataset Version

Marquez

API

● Marquez standardizes metadata collection
○ Job runs
○ parameters
○ version
○ inputs / outputs

● Datakin enables
○ Understanding operational dependencies
○ Impact analysis
○ Troubleshooting: What has changed

since the last time it worked?

Datakin leverages Marquez metadata

Datakin
Lineage analysis

Graph

Integrations

Thanks! <o/

Questions?

