FROM FLAT FILES TO DECONSTRUCTED DATABASE

The evolution and future of the Big Data ecosystem.

Julien Le Dem @J_ julien.ledem@wework.com April 2018

Principal Data Engineer wework

- Author of Parquet
- Apache member
- Apache PMCs: Arrow, Kudu, Heron, Incubator, Pig, Parquet, Tez
- Used Hadoop first at Yahoo in 2007
- Formerly Twitter Data platform and Dremio

* At the beginning there was Hadoop (2005)

* Actually, SQL was invented in the 70s

"MapReduce: A major step backwards"

What next?

Wew

At the beginning there was Hadoop

Storage: A distributed file system

Execution: Map Reduce

Based on Google's GFS and MapReduce papers

Great at looking for a needle in a haystack

Great at looking for a needle in a haystack ...

... with snowplows

Original Hadoop abstractions

Execution

Map/Reduce

Simple

- Flexible/Composable
- Logic and optimizations tightly coupled
- Ties execution with persistence

Databases have been around for a long time

Relational model	 First described in 1969 by Edgar F. Codd
------------------	--

SQL	 Originally SEQUEL developed in the early 70s at IBM 1986: first SQL standard Updated in 1989, 1992, 1996, 1999, 2003, 2006, 2008, 2011, 2016
------------	--

Underlying principles of relational databases

Separation of logic and optimization Separation of Schema and Application High level language focusing on logic (SQL) Indexing Optimizer	Standard SQL is understood by many
Integrity Transactions Integrity constraints Referential integrity	Evolution Views Schemas

Relational Database abstractions

Execution SQL	
SQL	
•	 Decouples logic of query from: Optimizations Data representation Indexing

SELECT a, AVG(b) FROM FOO GROUP BY a

Query evaluation

A well integrated system

wework

So why? Why Hadoop? Why Snowplows?

The relational model was constrained

Constraints are good

They allow optimizations

- Statistics
- Pick the best join algorithm
- Change the data layout
- Reusable optimization logic

We need the right Constraints

Need the right abstractions

Traditional SQL implementations:

- Flat schema
- Inflexible schema evolution
- History rewrite required
- No lower level abstractions
- Not scalable

Hadoop is flexible and scalable

No Data shape constraint	 Nested data structures Unstructured text with semantic annotations Graphs Non-uniform schemas
--------------------------	--

Solt's just code	 Room to scale algorithms that are not part of the standard Machine learning Your imagination is the limit
------------------	---

Open source	 You can improve it You can expand it You can reinvent it
-------------	--

You can actually implement SQL with this

10 years later

The deconstructed database

wework

Author: gamene https://www.flickr.com/photos/gamene/4007091102

The deconstructed database

The deconstructed database

We can mix and match individual components

We can mix and match individual components

Storage

Row oriented or columnar Immutable or mutable Stream storage vs analytics optimized **Query model**

SQL Functional

. . .

Machine Learning

Training models

Data Exchange

Row oriented Columnar

Streaming Execution

Optimized for High Throughput and Low latency processing **Batch Execution**

Optimized for high throughput and historical analysis

Emergence of standard components

Emergence of standard components

Columnar Storage

Apache Parquet as columnar representation at rest.

SQL parsing and optimization

Apache Calcite as a versatile query optimizer framework

Schema model

Apache Avro as pipeline friendly schema for the analytics world.

Columnar Exchange

Apache Arrow as the next generation inmemory representation and no-overhead data exchange

Table abstraction

Netflix's Iceberg has a great potential to provide Snapshot isolation and layout abstraction on top of distributed file systems.

The deconstructed database's optimizer: Calcite

Apache Calcite is used in:

Batch SQL

- Apache Hive
- Apache Drill
- Apache Phoenix
- Apache Kilin

• • •

Streaming SQL

- Apache Apex
- Apache Flink

. . .

- Apache SamzaSQL
- Apache StormSQL

The deconstructed database's storage

Mutable

 ∇

HBASE

Storage: Push downs

PROJECTION Read only what you need

Read only the columns that are needed:

• Columnar storage makes this efficient.

PREDICATE Filter

Evaluate filters during scan to:

- Leverage storage properties (min/max stats, partitioning, sort, etc)
- Avoid decoding skipped data.
- Reduce IO.

AGGREGATION

Avoid materializing intermediary data

To reduce IO, aggregation can also be implemented during the scan to:

• minimize materialization of intermediary data

The deconstructed database interchange: Apache Arrow

Storage: Stream persistence

Open source projects	Incumbent	Interesting PULSAR	
Features	 State of cor Snapshot Decoupling Parallel read Replication Data isolati 	nsumer: how do we recover from failure reads from writes ds on	

Big Data infrastructure blueprint

Big Data infrastructure blueprint

Big Data infrastructure blueprint

wework

The Future

Still Improving

A better data abstraction

- A better metadata repository
- A better table abstraction:

Netflix/Iceberg

• Common Push down

implementations (filter,

projection, aggregation)

Better interoperability

• More efficient interoperability:

Continued Apache Arrow adoption

Better data governance

- Global Data Lineage
- Access control
- Protect privacy
- Record User consent

Some predictions

A common access layer

Centralizes:

- Schema evolution
- Access control/anonymization
- Efficient push downs
- Efficient interoperability

A multi tiered streaming batch storage system

wework

THANK YOU!

julien.ledem@wework.com

Julien Le Dem @J_ April 2018

We're hiring!

Contact: julien.ledem@wework.com

We're hiring!

WeWork in numbers	 WeWork has 242 locations, in 72 cities internationally Over 210,000 members worldwide More than 20,000 member companies
-------------------	---

We're growing	 WeWork doubled in size last year and the year before We expect to double in size this year as well Broadened scope: WeWork Labs, Powered by We, Flatiron School, Meetup, WeLive,
---------------	--

And Technology jobs Locations	 San Francisco: Platform teams New York Tel Aviv Montevideo Singapore
--------------------------------------	--

Questions?

Julien Le Dem @J_ julien.ledem@wework.com April 2018

