
Data Pipelines Observability
OpenLineage & Marquez

Julien Le Dem
CTO & Co-Founder Datakin
@J_

AGENDA

● The need for metadata
● OpenLineage: open standard for metadata and

lineage collection
● Marquez: a reference implementation

The need for Metadata

Building a healthy data ecosystem

Team A Team B

Team C

● What is the data source?
● What is the schema?
● Who is the owner?
● How often is it updated?
● Where is it coming from?
● Who is using the data?
● What has changed?

Today: Limited context

Maslow’s Data hierarchy of needs

New Business Opportunities

Business Optimization

Data Quality

Data Freshness

Data Availability

OpenLineage

OpenLineage contributors

Creators and contributors from major open source projects involved

Purpose

Define an Open standard for metadata and lineage
collection by instrumenting data pipelines as they are
running.

Purpose: EXIF for data pipelines

Problem
Before:

● Duplication of effort: Each project
has to instrument all jobs

● Integrations are external and can
break with new versions

● Effort of integration is shared
● Integration can be pushed in

each project: no need to play
catch up

With Open Lineage

https://app.lucidchart.com/documents/edit/73afbcd0-e051-408b-9b47-614b1e1edc46/0?callback=close&name=slides&callback_type=back&v=389&s=573.9528188976378

Open Lineage scope Not in scope

BackendIntegrations

Metadata
and
lineage
collection
standard

Warehouse

Schedulers

...

Kafka
topic

Graph
db

HTTP
client

Consumers

Kafka
client

GraphDB
client

...

Core Model

● JSONSchema spec

● Consistent naming:
○ Jobs:

Example: scheduler.job.task

○ Datasets:

Example: instance.schema.table

Protocol
● Asynchronous events: unique run id for identifying a run and correlate events

○ Run Start event
■ source code version
■ run parameters

○ Run Complete event
■ input dataset
■ output dataset version and schema

● Configurable backend
○ Kafka
○ Http
○ ...

Facets

● Extensible:

Facets are atomic pieces of metadata identified by a unique name that can be
attached to the core entities.

● Decentralized:

Prefixes in facet names allow the definition of Custom facets that can be
promoted to the spec at a later point.

Facet examples

Dataset:
- Stats
- Schema
- Version
- Column level

lineage

Job:
- Source code
- Dependencies
- params
- Source control
- Query plan
- Query profile

Run:
- Schedule time
- Batch id

Metadata:

Ingest Storage Compute

S
tream

in
g

B
atch

/M
L

● Data Platform
built around
Marquez

● Integrations
○ Ingest
○ Storage
○ Compute

Flink

Airflow

Kafka

Iceberg / S3

BI

OpenLineage

Marquez: Data model

Job

Dataset Job Version

Run

*

1

*

1

*

1

1*

1*
Source

1 *

●
●
●
●
●
●
●
●

●
●
●

Dataset Version

API

● Open Lineage and Marquez standardize
metadata collection
○ Job runs
○ Parameters
○ Version
○ Inputs / outputs

● Datakin enables
○ Understanding operational dependencies
○ Impact analysis
○ Troubleshooting: What has changed

since the last time it worked?

Datakin leverages Marquez metadata

Lineage analysis

Graph

Integrations

Join the conversation

OpenLineage:

Github: github.com/OpenLineage

Slack: OpenLineage.slack.com

Twitter: @OpenLineage

Email: groups.google.com/g/openlineage

Marquez:

Github: github.com/MarquezProject/marquez

Slack: MarquezProject.slack.com

Twitter: @MarquezProject

Thank You

*we’re hiring! jobs@datakin.com

