
Data lineage and observability
with OpenLineage

Julien Le Dem, CTO and Co-Founder Datakin | Mai 2021

AGENDA

● The need for metadata
● OpenLineage - the open standard for lineage

collection - and Marquez, its reference
implementation

● Spark observability with OpenLineage

The need for Metadata

3

Building a healthy data ecosystem

Team A Team B

Team C

5

Today: Limited context

● What is the data source?
● What is the schema?
● Who is the owner?
● How often is it updated?
● Where is it coming from?
● Who is using the data?
● What has changed?

DATA

Maslow’s Data hierarchy of needs

New Business Opportunities

Business Optimization

Data Quality

Data Freshness

Data Availability

OpenLineage

7

OpenLineage contributors
Creators and contributors from major open source projects involved

Purpose: Define an Open standard for
metadata and lineage collection
by instrumenting data pipelines
as they are running.

Purpose:
EXIF for data pipelines

Problem
Before:

● Duplication of effort: Each project
has to instrument all jobs

● Integrations are external and can
break with new versions

● Effort of integration is shared
● Integration can be pushed in

each project: no need to play
catch up

With Open Lineage

https://app.lucidchart.com/documents/edit/73afbcd0-e051-408b-9b47-614b1e1edc46/0?callback=close&name=slides&callback_type=back&v=389&s=573.9528188976378

Open Lineage scope Not in scope

BackendIntegrations

Metadata
and
lineage
collection
standard

Warehouse

Schedulers

...

Kafka
topic

Graph
db

HTTP
client

Consumers

Kafka
client

GraphDB
client

...

Core Model:
- JSONSchema spec

- Consistent naming:
Jobs:

scheduler.job.task
Datasets:

instance.schema.table

13

14

Protocol:

- Asynchronous events:

Unique run id for identifying a
run and correlate events

- Configurable backend:
- Kafka
- Http

Examples:

● Run Start event
○ source code version
○ run parameters

● Run Complete event
○ input dataset
○ output dataset version and schema

15

Facets

● Extensible:

Facets are atomic pieces of metadata
identified by a unique name that can be
attached to the core entities.

● Decentralized:

Prefixes in facet names allow the
definition of Custom facets that can be
promoted to the spec at a later point.

Facet examples

Dataset:
- Stats
- Schema
- Version
- Column level

lineage

Job:
- Source code
- Dependencies
- params
- Source control
- Query plan
- Query profile

Run:
- Schedule time
- Batch id

17

Metadata:

Ingest Storage Compute

S
tream

in
g

B
atch

/M
L

● Data Platform
built around
Marquez

● Integrations
○ Ingest
○ Storage
○ Compute

Flink

Airflow

Kafka

Iceberg / S3

BI

OpenLineage

Marquez: Data model

Job

Dataset Job Version

Run

*

1

*

1

*

1

1*

1*
Source

1 *

● MYSQL
● POSTGRESQL
● REDSHIFT
● SNOWFLAKE
● KAFKA
● S3
● ICEBERG
● DELTALAKE

● BATCH
● STREAM
● SERVICE

Dataset Version

API

● Open Lineage and Marquez standardize
metadata collection
○ Job runs
○ Parameters
○ Version
○ Inputs / outputs

● Datakin enables
○ Understanding operational dependencies
○ Impact analysis
○ Troubleshooting: What has changed

since the last time it worked?

Datakin leverages Marquez metadata

Lineage analysis

Graph

Integrations

Spark observability with
OpenLineage

21

22

Spark java agent
spark.driver.extraJavaOptions:

 -javaagent:marquez-spark-0.13.1.jar={argument}

Metadata
collected

23

Lineage: inputs/outputs

Data volume: row count/byte size

Logical plan

Lineage model

24

Lineage Example across jobs

26

Example of
OpenLineage
metadata usage:

Data volume
evolution

Join the conversation

OpenLineage:

Github: github.com/OpenLineage

Slack: OpenLineage.slack.com

Twitter: @OpenLineage

Email: groups.google.com/g/openlineage

Marquez:

Github: github.com/MarquezProject/marquez

Slack: MarquezProject.slack.com

Twitter: @MarquezProject

